首页    期刊浏览 2024年12月06日 星期五
登录注册

文章基本信息

  • 标题:Bayesian Bootstraps for Massive Data
  • 本地全文:下载
  • 作者:Andrés F. Barrientos ; Víctor Peña
  • 期刊名称:Bayesian Analysis
  • 印刷版ISSN:1931-6690
  • 电子版ISSN:1936-0975
  • 出版年度:2020
  • 卷号:15
  • 期号:2
  • 页码:363-388
  • DOI:10.1214/19-BA1155
  • 语种:English
  • 出版社:International Society for Bayesian Analysis
  • 摘要:In this article, we present data-subsetting algorithms that allow for the approximate and scalable implementation of the Bayesian bootstrap. They are analogous to two existing algorithms in the frequentist literature: the bag of little bootstraps (Kleiner et al., 2014) and the subsampled double bootstrap (Sengupta et al., 2016). Our algorithms have appealing theoretical and computational properties that are comparable to those of their frequentist counterparts. Additionally, we provide a strategy for performing lossless inference for a class of functionals of the Bayesian bootstrap and briefly introduce extensions to the Dirichlet Process.
  • 关键词:bootstrap; big data; Bayesian nonparametric; scalable inference
国家哲学社会科学文献中心版权所有