首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Automatic differentiation based for particle swarm optimization Steepest descent direction
  • 本地全文:下载
  • 作者:Aris Thobirin ; Iwan Tri Riyadi Yanto
  • 期刊名称:IJAIN (International Journal of Advances in Intelligent Informatics)
  • 印刷版ISSN:2442-6571
  • 电子版ISSN:2548-3161
  • 出版年度:2015
  • 卷号:1
  • 期号:2
  • 页码:90-97
  • DOI:10.26555/ijain.v1i2.29
  • 语种:English
  • 出版社:Universitas Ahmad Dahlan
  • 摘要:Particle swam optimization (PSO) is one of the most effective optimization methods to find the global optimum point. In other hand, the descent direction (DD) is the gradient based method that has the local search capability. The combination of both methods is promising and interesting to get the method with effective global search capability and efficient local search capability. However, In many application, it is difficult or impossible to obtain the gradient exactly of an objective function. In this paper, we propose Automatic differentiation (AD) based for PSODD. we compare our methods on benchmark function. The results shown that the combination methods give us a powerful tool to find the solution.
  • 关键词:Particle swam optimization;Gradient;Descent direction;AD
国家哲学社会科学文献中心版权所有