首页    期刊浏览 2024年12月15日 星期日
登录注册

文章基本信息

  • 标题:A Smart Social Insurance Big Data Analytics Framework Based on Machine Learning Algorithms
  • 本地全文:下载
  • 作者:Youssef Senousy ; Abdulaziz Shehab ; Wael K. Hanna
  • 期刊名称:Cybernetics and Information Technologies
  • 印刷版ISSN:1311-9702
  • 电子版ISSN:1314-4081
  • 出版年度:2020
  • 卷号:20
  • 期号:1
  • 页码:95-111
  • 语种:English
  • 出版社:Bulgarian Academy of Science
  • 摘要:Social insurance is an individual’s protection against risks such asretirement, death or disability. Big data mining and analytics are a way that couldhelp the insurers and the actuaries to get the optimal decision for the insuredindividuals. Dependently, this paper proposes a novel analytic framework forEgyptian Social insurance big data. NOSI’s data contains data, which need somepre-processing methods after extraction like replacing missing values,standardization and outlier/extreme data. The paper also presents using some miningmethods, such as clustering and classification algorithms on the Egyptian socialinsurance dataset through an experiment. In clustering, we used K-means clusteringand the result showed a silhouette score 0.138 with two clusters in the datasetfeatures. In classification, we used the Support Vector Machine (SVM) classifier andclassification results showed a high accuracy percentage of 94%.
  • 关键词:Social Insurance; Data Integration; Big Data Mining ; Big Data Analytics
国家哲学社会科学文献中心版权所有