摘要:SummaryMultiple mazes are routinely used to test the performance of animals because each has disadvantages inherent to its shape. However, the maze shape cannot be flexibly and rapidly reproduced in a repeatable and scalable way in a single environment. Here, to overcome the lack of flexibility, scalability, reproducibility, and repeatability, we develop a reconfigurable maze system that consists of interlocking runways and an array of accompanying parts. It allows experimenters to rapidly and flexibly configure a variety of maze structures along the grid pattern in a repeatable and scalable manner. Spatial navigational behavior and hippocampal place coding were not impaired by the interlocking mechanism. As a proof-of-principle demonstration, we demonstrate that the maze morphing induces location remapping of the spatial receptive field. The reconfigurable maze thus provides flexibility, scalability, repeatability, and reproducibility, therefore facilitating consistent investigation into the neuronal substrates for learning and memory and allowing screening for behavioral phenotypes.Graphical AbstractDisplay OmittedHighlights•The reconfigurable maze enables flexibly in building a variety of maze paths•The maze ensures reproducibility, repeatability, and scalability•The maze does not impair spatial navigational behavior or neuronal activity•Various tests of learning and memory can be conducted in a single environmentNeuroscience; Behavioral Neuroscience; Techniques in Neuroscience