首页    期刊浏览 2025年03月03日 星期一
登录注册

文章基本信息

  • 标题:Palmitic‐Acid‐Based Hydrophobic Deep Eutectic Solvents for the Extraction of Lower Alcohols from Aqueous Media: Liquid–Liquid Equilibria Measurements, Validation and Process Economics
  • 本地全文:下载
  • 作者:Rupesh Verma ; Tamal Banerjee
  • 期刊名称:Global Challenges
  • 印刷版ISSN:2056-6646
  • 电子版ISSN:2056-6646
  • 出版年度:2019
  • 卷号:3
  • 期号:11
  • 页码:1-12
  • DOI:10.1002/gch2.201900024
  • 语种:English
  • 出版社:John Wiley & Sons, Ltd
  • 摘要:AbstractA new, natural, hydrophobic deep eutectic solvent (NADES) based on DL‐menthol and palmitic acid is adopted for the extraction of alcohols from aqueous phase. DL‐menthol is used as a hydrogen bond acceptor and palmitic acid, being a natural organic acid, as a hydrogen bond donor. The synthesis is carried out by the addition of DL‐menthol and palmitic acid in a defined molar ratio. Physical properties of NADES along with water stability are then measured. Liquid–liquid equilibria (LLE) of lower alcohols, namely, DES (1) + lower alcohols (ethanol/1‐propanol/1‐butanol) (2) + water (3) are carried out atp= 1 atm andT= 298.15 K. LLE results show type‐I phase behavior, where alcohol is preferentially attracted toward DES. The tie lines are then regressed via nonrandom two liquid and universal quasichemical models, which give root mean square deviation (RMSD) in the range of 0.29–0.35% and 0.39–0.75%, respectively. Finally, the quantum‐chemical‐based conductor‐like screening model‐segment activity coefficient is used to predict the tie lines, which gives an RMSD of 2.1–5.2%. A hybrid extractive distillation flowsheet is then used for scale up, process economics, and solvent recovery aspects in ASPEN using DES as a “pseudocomponent.”The preparation of palmitic‐acid‐based deep eutectic solvent and its process optimization for the extraction of lower alcoholsis presented.
  • 关键词:ASPEN PlusCOSMO‐SACdeep eutectic solventslower alcoholsNRTLpseudocomponentssigma profilesUNIQUAC
国家哲学社会科学文献中心版权所有