首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Optimal control of secondary side supply water temperature for substation in district heating systems
  • 本地全文:下载
  • 作者:Juan Hou ; Haoran Li ; Natasa Nord
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2019
  • 卷号:111
  • 页码:1-8
  • DOI:10.1051/e3sconf/201911106015
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:Low temperature is the most significant feature of the future district heating system- the 4thgeneration district heating (4GDH). However, a widely used control strategy for supply water temperature in substation is weather- compensated control. It is a feedforward control without any dynamic information about buildings, which can lead to higher or lower supply water temperature. This paper presents model predictive controller (MPC) applied to the supply water temperature control for substations in district heating systems. MPC is an advanced control technique, which can make full use of dynamic information of buildings to determine the optimal supply water temperature of substations. In this paper, a multiple inputs and single output dynamic model was identified by subspace methods. Two different MPC controllers were designed in Simulink. The MPC controller 1 focused on keeping indoor air temperature at reference values. The MPC controller 2 focused on both keeping indoor air temperature at reference values and tracking the minimum supply water temperature in order to find the temperature potential for the future DH systems. Both of the MPC controllers proved to have a better tracking effect for indoor air temperature and lower average supply temperatures compared to weather- compensated. The MPC controller 2 could further lower supply water temperature compared to the MPC controller 1 by tracking minimum supply water temperature in its objective function. The average supply water temperatures for the weather- compensated, the MPC controller1, and the MPC controller 2 were 52°C, 51°C and 50°C, respectively. The results showed that MPC has a great potential in the area of supply water temperature control of the district heating systems.
国家哲学社会科学文献中心版权所有