出版社:Chinese Association for Aerosol Research in Taiwan
摘要:The acquisition of accurate emission factors (EFs) of pollutants is an inevitable step to the establishment of emission inventories for development of pollution control policies. The current studies were focused on large-scale industries (LSIs) although tremendous pollutants emitted from the small-scale industries (SSIs) with small coal-fired boilers (SCFBs) ascribe to the deficiency of pollutant removal facilities (RFs). A systematic field sampling and measurements conducted in 51 enterprises involving production of pharmaceuticals, brick and food to obtain the EFs of SO2, NOx, PM, and VOCs (SNPV) associated with coal consumption (EFI), industrial output (EFII), and product yield (EFIII). Among them, PM-RFs were all equipped except for 3 brick factories, no NOx- and VOCs-RFs were installed, and SO2-RFs were installed in part. Obvious fluctuations existed in EFI and EFII values among 51 companies owning to the differences of pollutant removal efficiencies, coal compositions, annual outputs, production processes, and products. Co-burning of coal and coal gangue (raw material) in brick production weakened the correlation between sulfur contents in coal and SO2 EFI values. The using of organic solvents in drug making process promoted the emission of VOCs. SO2 EFs in factories with RFs were much lower than those factories without RFs. SO2 EFs dominated over those of PM and NOx among three kinds of enterprises, especially in brick companies. For EFI (in kg t–1), food industry possessed highest value for SO2, PM, and NOx, while the maximum value for VOCs occurred at pharmaceuticals industry. Due to the low output values of brick companies, their SNPV possessed the highest EFII compared to the other two kinds of factories. NOx EFs experienced lessen fluctuations than other pollutants among all the factories due to the different formation mechanism and no installation of NOx RFs. EFIII showed various fluctuations due to the different product types.
关键词:Emission factor;NOx;SOx;VOCs;Pharmaceutical industry;Brick industry