首页    期刊浏览 2024年12月13日 星期五
登录注册

文章基本信息

  • 标题:A nonlocal diffusion problem that approximates the heat equation with Neumann boundary conditions
  • 本地全文:下载
  • 作者:Cesar A. Gómez ; Julio D. Rossi
  • 期刊名称:Journal of King Saud University - Science
  • 印刷版ISSN:1018-3647
  • 出版年度:2020
  • 卷号:32
  • 期号:1
  • 页码:17-20
  • DOI:10.1016/j.jksus.2017.08.008
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn this paper we discuss a nonlocal approximation to the classical heat equation with Neumann boundary conditions. We considerwt∊(x,t)=1∊N+2∫ΩJx-y∊(w∊(y,t)-w∊(x,t))dy+C1∊N∫∂ΩJx-y∊g(y,t)dSy,(x,t)∈Ω‾×(0,T),w(x,0)=u0(x),x∈Ω‾,and we show that the corresponding solutions,w∊, converge to the classical solution of the local heat equationvt=Δvwith Neumann boundary conditions,∂v∂n(x,t)=g(x,t), and initial conditionv(0)=u0, as the parameter∊goes to zero. The obtained convergence is in the weak star onL∞topology.
  • 关键词:Nonlocal diffusion;Neumann boundary conditions;Heat equation
国家哲学社会科学文献中心版权所有