首页    期刊浏览 2025年02月21日 星期五
登录注册

文章基本信息

  • 标题:A data-driven framework to deal with intrinsic variability of industrial processes: An application in the textile industry
  • 本地全文:下载
  • 作者:Patrice Lajoie ; Jonathan Gaudreault ; Nadia Lehoux
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2019
  • 卷号:52
  • 期号:13
  • 页码:731-736
  • DOI:10.1016/j.ifacol.2019.11.202
  • 语种:English
  • 出版社:Elsevier
  • 摘要:In many industries (e.g. natural resources processing, food processing, etc.), variation is intrinsic to the process. Data captured by advanced technologies and sensors can drive in-depth reflection to avoid and resolve potential issues related to process variability. In this study, we offer practical steps as a guidance for production engineers to deal with the intrinsic variability of industrial processes. We propose a methodological framework in three steps, which includes the definition and the characterization of the industrial process, predictive modeling and prescriptive analytics. In addition, we illustrate the framework application with a real case study from the textile industry.
  • 关键词:KeywordsProbabilisticstatistical models in industrial plant controlIndustrialapplied mathematics for productionIndustry 4.0intrinsic variabilitydata analytics
国家哲学社会科学文献中心版权所有