首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:Preference Elicitation within Framework of Fully Probabilistic Design of Decision Strategies ⁎
  • 本地全文:下载
  • 作者:Miroslav Kárný ; Tatiana V. Guy
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2019
  • 卷号:52
  • 期号:29
  • 页码:239-244
  • DOI:10.1016/j.ifacol.2019.12.656
  • 语种:English
  • 出版社:Elsevier
  • 摘要:The paper proposes the preference-elicitation support within the framework of fully probabilistic design (FPD) of decision strategies. Agent employing FPD uses probability densities to model the closed-loop behaviour, i.e. a collection of all observed, opted and considered random variables. Opted actions are generated by a randomised strategy. The optimal decision strategy minimises Kullback-Leibler divergence of the closed-loop model to its ideal counterpart describing the agent’s preferences. Thus, selecting the ideal closed-loop model comprises preference elicitation.The paper provides a general choice of the best ideal closed-loop model reflecting agent’s preferences. The foreseen application potential of such a preference elicitation is high as FPD is a non-trivial dense extension of Bayesian decision making that dominates prescriptive decision theories. The general solution is illustrated on the regulation task with a linear Gaussian model describing the agent’s environment.
  • 关键词:Keywordsdynamic decision makingpreference elicitationfully probabilistic designdecision strategyKullback Leibler Divergence
国家哲学社会科学文献中心版权所有