首页    期刊浏览 2024年12月05日 星期四
登录注册

文章基本信息

  • 标题:Artificial intelligence for forecasting in supply chain management: a case study of White Sugar consumption rate in Thailand
  • 本地全文:下载
  • 作者:Anirut Kantasa-ard ; Abdelghani Bekrar ; Abdessamad Ait el cadi
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2019
  • 卷号:52
  • 期号:13
  • 页码:725-730
  • DOI:10.1016/j.ifacol.2019.11.201
  • 语种:English
  • 出版社:Elsevier
  • 摘要:This paper proposes an appropriate model to forecast the trend of white sugar consumption rate in Thailand due to the fluctuation of consumption rate nowadays. This paper will focus on two main forecasting model types, which are the regression models and neural network models. Moreover, the performance is evaluated by using Root Mean Square Error (RMSE) and Theil’U statistic value. After processing the experiments, the results demonstrate that Long Short-Term Memory (LSTM) recurrent neural network provides the best performance for the forecasting, with the condition of combination between the existing consumption rate and other relevant factors like production supply, import rate, export rate, and inventory stock. Also tuning the model’s parameters is an important issue.
  • 关键词:KeywordsMachine LearningPhysical InternetDemand ForecastingNeural NetworkRegression
国家哲学社会科学文献中心版权所有