首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Realistic Sonar Image Simulation Using Generative Adversarial Network
  • 本地全文:下载
  • 作者:Minsung Sung ; Jason Kim ; Juhwan Kim
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2019
  • 卷号:52
  • 期号:21
  • 页码:291-296
  • DOI:10.1016/j.ifacol.2019.12.322
  • 语种:English
  • 出版社:Elsevier
  • 摘要:Sonar sensors are widely utilized underwater because they can observe long-ranged objects and are tolerant to measurement conditions, such as turbidity and light conditions. However, sonar images have low quality and hard to collect, so development and application of sonar-based algorithms are difficult. This paper proposes a method to generate realistic sonar images or to segment real sonar image, to better utilize the sonar sensors. A simple sonar image simulator was implemented using a ray-tracing method. The simulator could calculate semantic information of real sonar images including properties of highlight, background, and shadow regions. Then, a generative adversarial network translated the simulated images into more realistic images or real sonar images into simulated-like images. The proposed method can be used to augment or pre-process sonar images.
  • 关键词:KeywordsSonar simulatorForward Scan SonarFSSGANSonar GAN
国家哲学社会科学文献中心版权所有