首页    期刊浏览 2025年01月19日 星期日
登录注册

文章基本信息

  • 标题:A Variable Step Size LMS Adaptive Filtering Algorithm Based on Maximum Correntropy Criterion for Identification of Low Frequency Oscillation Modes
  • 本地全文:下载
  • 作者:Wang Nan ; Haiquan Zhao
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2019
  • 卷号:52
  • 期号:24
  • 页码:163-167
  • DOI:10.1016/j.ifacol.2019.12.400
  • 语种:English
  • 出版社:Elsevier
  • 摘要:In this paper, the adaptive filtering based on LMS algorithm is applied to the recognition of low-frequency oscillation mode. The step factor is improved based on Sinh function to accelerate the convergence speed of the algorithm while ensuring a low steady-state error, and the robustness of the algorithm in identification is improved by combining the maximum correlation entropy rule. The effectiveness of the algorithm for low-frequency oscillation mode identification is verified by simulation of the 10-machine 39-node New-England power system.
  • 关键词:Keywordslow-frequency oscillationleast mean squares algorithmvariable step sizemaximum correlation entropy
国家哲学社会科学文献中心版权所有