首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:Binary Matrix Factorization applied to Netflix dataset analysis
  • 本地全文:下载
  • 作者:Mamadou Diop ; Sebastian Miron ; Anthony Larue
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2019
  • 卷号:52
  • 期号:24
  • 页码:13-17
  • DOI:10.1016/j.ifacol.2019.12.368
  • 语种:English
  • 出版社:Elsevier
  • 摘要:In this paper we aim at assessing the potential of Binary Matrix Factorization (BMF) in the implementation of recommendation systems, by analyzing a Netflix dataset. In particular, we study the explanatory power and the prediction capability of a particular BMF algorithm based on a post non-linear mixture model, namely the Post NonLinear Penalty Function (PNL-PF) algorithm. Unlike the majority of BMF methods, PNL-PF is capable of efficiently handling the difficult case of correlated rank-1 binary terms. We show that BMF represents an interesting alternative to classical matrix factorization methods in terms of explanatory power and prediction capability.
  • 关键词:KeywordsBinary Matrix FactorizationRecommendation system
国家哲学社会科学文献中心版权所有