摘要:Sharp majorization is extended to the multivariate case. To achieve this, the notions of $\sigma$-strong convexity, monotonicity, and one-sided Lipschitz continuity are extended to $\mathbf{\Sigma}$-strong convexity, monotonicity, and Lipschitz continuity, respectively. The connection between a convex function and its Fenchel-Legendre transform is then developed. Sharp majorization is illustrated in single and multiple dimensions, and we show that these extensions yield improvements on bounds given within the literature. The new methodology introduced herein is used to develop a variational approximation for the Bayesian multinomial regression model.