首页    期刊浏览 2024年12月05日 星期四
登录注册

文章基本信息

  • 标题:Inference from small and big data sets with error rates
  • 本地全文:下载
  • 作者:Miklós Csörgő ; Masoud M. Nasari
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2015
  • 卷号:9
  • 期号:1
  • 页码:535-566
  • DOI:10.1214/15-EJS1011
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:In this paper we introduce randomized $t$-type statistics that will be referred to as randomized pivots. We show that these randomized pivots yield central limit theorems with a significantly smaller error as compared to that of their classical counterparts under the same conditions. This constitutes a desirable result when a relatively small number of data is available. When a data set is too big to be processed, or when it constitutes a random sample from a super-population, we use our randomized pivots to infer about the mean based on significantly smaller sub-samples. The approach taken is shown to relate naturally to estimating distributions of both small and big data sets.
  • 关键词:Randomized t-pivots;Berry-Ess´een bounds;im proved CLT’s;small and moderate samples.
国家哲学社会科学文献中心版权所有