首页    期刊浏览 2024年12月06日 星期五
登录注册

文章基本信息

  • 标题:Perfect clustering for stochastic blockmodel graphs via adjacency spectral embedding
  • 本地全文:下载
  • 作者:Vince Lyzinski ; Daniel L. Sussman ; Minh Tang
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2014
  • 卷号:8
  • 期号:2
  • 页码:2905-2922
  • DOI:10.1214/14-EJS978
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:Vertex clustering in a stochastic blockmodel graph has wide applicability and has been the subject of extensive research. In this paper, we provide a short proof that the adjacency spectral embedding can be used to obtain perfect clustering for the stochastic blockmodel and the degree-corrected stochastic blockmodel. We also show an analogous result for the more general random dot product graph model.
国家哲学社会科学文献中心版权所有