首页    期刊浏览 2025年01月06日 星期一
登录注册

文章基本信息

  • 标题:Asymptotically minimax empirical Bayes estimation of a sparse normal mean vector
  • 本地全文:下载
  • 作者:Ryan Martin ; Stephen G. Walker
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2014
  • 卷号:8
  • 期号:2
  • 页码:2188-2206
  • DOI:10.1214/14-EJS949
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:For the important classical problem of inference on a sparse high-dimensional normal mean vector, we propose a novel empirical Bayes model that admits a posterior distribution with desirable properties under mild conditions. In particular, our empirical Bayes posterior distribution concentrates on balls, centered at the true mean vector, with squared radius proportional to the minimax rate, and its posterior mean is an asymptotically minimax estimator. We also show that, asymptotically, the support of our empirical Bayes posterior has roughly the same effective dimension as the true sparse mean vector. Simulation from our empirical Bayes posterior is straightforward, and our numerical results demonstrate the quality of our method compared to others having similar large-sample properties.
国家哲学社会科学文献中心版权所有