首页    期刊浏览 2024年12月05日 星期四
登录注册

文章基本信息

  • 标题:Nonparametric conditional density estimation for censored data based on a recursive kernel
  • 本地全文:下载
  • 作者:Salah Khardani ; Sihem Semmar
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2014
  • 卷号:8
  • 期号:2
  • 页码:2541-2556
  • DOI:10.1214/14-EJS960
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:Consider a regression model in which the response is subject to random right censoring. The main goal of this paper concerns the kernel estimation of the conditional density function in the case of censored interest variable. We employ a recursive version of the Nadaraya-Watson estimator in this context. The uniform strong consistency of the recursive kernel conditional density estimator is derived. Also, we prove the asymptotic normality of this estimator.
  • 关键词:Asymptotic normality;censored data;condi tional density;kernel estimator;recursive estimation;Kaplan–Meier esti mator;uniform almost sure convergence.
国家哲学社会科学文献中心版权所有