摘要:We study nonparametric maximum likelihood estimation of a log-concave density function $f_{0}$ which is known to satisfy further constraints, where either (a) the mode $m$ of $f_{0}$ is known, or (b) $f_{0}$ is known to be symmetric about a fixed point $m$. We develop asymptotic theory for both constrained log-concave maximum likelihood estimators (MLE’s), including consistency, global rates of convergence, and local limit distribution theory. In both cases, we find the MLE’s pointwise limit distribution at $m$ (either the known mode or the known center of symmetry) and at a point $x_{0}\ne m$. Software to compute the constrained estimators is available in the R package logcondens.mode.