首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:Univariate log-concave density estimation with symmetry or modal constraints
  • 本地全文:下载
  • 作者:Charles R. Doss ; Jon A. Wellner
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2019
  • 卷号:13
  • 期号:2
  • 页码:2391-2461
  • DOI:10.1214/19-EJS1574
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:We study nonparametric maximum likelihood estimation of a log-concave density function $f_{0}$ which is known to satisfy further constraints, where either (a) the mode $m$ of $f_{0}$ is known, or (b) $f_{0}$ is known to be symmetric about a fixed point $m$. We develop asymptotic theory for both constrained log-concave maximum likelihood estimators (MLE’s), including consistency, global rates of convergence, and local limit distribution theory. In both cases, we find the MLE’s pointwise limit distribution at $m$ (either the known mode or the known center of symmetry) and at a point $x_{0}\ne m$. Software to compute the constrained estimators is available in the R package logcondens.mode.
国家哲学社会科学文献中心版权所有