首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Nonparametric inference on Lévy measures of compound Poisson-driven Ornstein-Uhlenbeck processes under macroscopic discrete observations
  • 本地全文:下载
  • 作者:Daisuke Kurisu
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2019
  • 卷号:13
  • 期号:2
  • 页码:2521-2565
  • DOI:10.1214/19-EJS1584
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:This study examines a nonparametric inference on a stationary Lévy-driven Ornstein-Uhlenbeck (OU) process $X=(X_{t})_{t\geq 0}$ with a compound Poisson subordinator. We propose a new spectral estimator for the Lévy measure of the Lévy-driven OU process $X$ under macroscopic observations. We also derive, for the estimator, multivariate central limit theorems over a finite number of design points, and high-dimensional central limit theorems in the case wherein the number of design points increases with an increase in the sample size. Built on these asymptotic results, we develop methods to construct confidence bands for the Lévy measure and propose a practical method for bandwidth selection.
国家哲学社会科学文献中心版权所有