首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Estimating the reach of a manifold
  • 本地全文:下载
  • 作者:Eddie Aamari ; Jisu Kim ; Frédéric Chazal
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2019
  • 卷号:13
  • 期号:1
  • 页码:1359-1399
  • DOI:10.1214/19-EJS1551
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:Various problems in manifold estimation make use of a quantity called the reach, denoted by $\tau_{M}$, which is a measure of the regularity of the manifold. This paper is the first investigation into the problem of how to estimate the reach. First, we study the geometry of the reach through an approximation perspective. We derive new geometric results on the reach for submanifolds without boundary. An estimator $\hat{\tau }$ of $\tau_{M}$ is proposed in an oracle framework where tangent spaces are known, and bounds assessing its efficiency are derived. In the case of i.i.d. random point cloud $\mathbb{X}_{n}$, $\hat{\tau }(\mathbb{X}_{n})$ is showed to achieve uniform expected loss bounds over a $\mathcal{C}^{3}$-like model. Finally, we obtain upper and lower bounds on the minimax rate for estimating the reach.
国家哲学社会科学文献中心版权所有