首页    期刊浏览 2025年02月28日 星期五
登录注册

文章基本信息

  • 标题:A nearest neighbor estimate of the residual variance
  • 本地全文:下载
  • 作者:Luc Devroye ; László Györfi ; Gábor Lugosi
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2018
  • 卷号:12
  • 期号:1
  • 页码:1752-1778
  • DOI:10.1214/18-EJS1438
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:We study the problem of estimating the smallest achievable mean-squared error in regression function estimation. The problem is equivalent to estimating the second moment of the regression function of $Y$ on $X\in{\mathbb{R}} ^{d}$. We introduce a nearest-neighbor-based estimate and obtain a normal limit law for the estimate when $X$ has an absolutely continuous distribution, without any condition on the density. We also compute the asymptotic variance explicitly and derive a non-asymptotic bound on the variance that does not depend on the dimension $d$. The asymptotic variance does not depend on the smoothness of the density of $X$ or of the regression function. A non-asymptotic exponential concentration inequality is also proved. We illustrate the use of the new estimate through testing whether a component of the vector $X$ carries information for predicting $Y$.
国家哲学社会科学文献中心版权所有