首页    期刊浏览 2025年02月21日 星期五
登录注册

文章基本信息

  • 标题:On the asymptotic efficiency of selection procedures for independent Gaussian populations
  • 本地全文:下载
  • 作者:Royi Jacobovic ; Or Zuk
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2017
  • 卷号:11
  • 期号:2
  • 页码:5375-5405
  • DOI:10.1214/17-EJS1375
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:The field of discrete event simulation and optimization techniques motivates researchers to adjust classic ranking and selection (R&S) procedures to the settings where the number of populations is large. We use insights from extreme value theory in order to reveal the asymptotic properties of R&S procedures. Namely, we generalize the asymptotic result of Robbins and Siegmund regarding selection from independent Gaussian populations with known constant variance by their means to the case of selecting a subset of varying size out of a given set of populations. In addition, we revisit the problem of selecting the population with the highest mean among independent Gaussian populations with unknown and possibly different variances. Particularly, we derive the relative asymptotic efficiency of Dudewicz and Dalal’s and Rinott’s procedures, showing that the former can be asymptotically superior by a multiplicative factor which is larger than one, but this factor may be reduced by proper choice of parameters. We also use our asymptotic results to suggest that the sample size in the first stage of the two procedures should be logarithmic in the number of populations.
  • 关键词:Selection procedures;asymptotic statistics;ex treme value theory;discrete events simulation.
国家哲学社会科学文献中心版权所有