首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Adaptive posterior contraction rates for the horseshoe
  • 本地全文:下载
  • 作者:Stéphanie van der Pas ; Botond Szabó ; Aad van der Vaart
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2017
  • 卷号:11
  • 期号:2
  • 页码:3196-3225
  • DOI:10.1214/17-EJS1316
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:We investigate the frequentist properties of Bayesian procedures for estimation based on the horseshoe prior in the sparse multivariate normal means model. Previous theoretical results assumed that the sparsity level, that is, the number of signals, was known. We drop this assumption and characterize the behavior of the maximum marginal likelihood estimator (MMLE) of a key parameter of the horseshoe prior. We prove that the MMLE is an effective estimator of the sparsity level, in the sense that it leads to (near) minimax optimal estimation of the underlying mean vector generating the data. Besides this empirical Bayes procedure, we consider the hierarchical Bayes method of putting a prior on the unknown sparsity level as well. We show that both Bayesian techniques lead to rate-adaptive optimal posterior contraction, which implies that the horseshoe posterior is a good candidate for generating rate-adaptive credible sets.
国家哲学社会科学文献中心版权所有