首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Parameter estimation of Gaussian stationary processes using the generalized method of moments
  • 本地全文:下载
  • 作者:Luis A. Barboza ; Frederi G. Viens
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2017
  • 卷号:11
  • 期号:1
  • 页码:401-439
  • DOI:10.1214/17-EJS1230
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:We consider the class of all stationary Gaussian process with explicit parametric spectral density. Under some conditions on the autocovariance function, we defined a GMM estimator that satisfies consistency and asymptotic normality, using the Breuer-Major theorem and previous results on ergodicity. This result is applied to the joint estimation of the three parameters of a stationary Ornstein-Uhlenbeck (fOU) process driven by a fractional Brownian motion. The asymptotic normality of its GMM estimator applies for any $H$ in $(0,1)$ and under some restrictions on the remaining parameters. A numerical study is performed in the fOU case, to illustrate the estimator’s practical performance when the number of datapoints is moderate.
  • 关键词:Fractional Brownian motion;Ornstein Uhlen beck process;method of moments.
国家哲学社会科学文献中心版权所有