首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Adaptive variable selection in nonparametric sparse additive models
  • 本地全文:下载
  • 作者:Cristina Butucea ; Natalia Stepanova
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2017
  • 卷号:11
  • 期号:1
  • 页码:2321-2357
  • DOI:10.1214/17-EJS1275
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:We consider the problem of recovery of an unknown multivariate signal $f$ observed in a $d$-dimensional Gaussian white noise model of intensity $\varepsilon $. We assume that $f$ belongs to a class of smooth functions in $L_{2}([0,1]^{d})$ and has an additive sparse structure determined by the parameter $s$, the number of non-zero univariate components contributing to $f$. We are interested in the case when $d=d_{\varepsilon }\to \infty $ as $\varepsilon \to 0$ and the parameter $s$ stays “small” relative to $d$. With these assumptions, the recovery problem in hand becomes that of determining which sparse additive components are non-zero.
国家哲学社会科学文献中心版权所有