摘要:We consider the problem of recovery of an unknown multivariate signal $f$ observed in a $d$-dimensional Gaussian white noise model of intensity $\varepsilon $. We assume that $f$ belongs to a class of smooth functions in $L_{2}([0,1]^{d})$ and has an additive sparse structure determined by the parameter $s$, the number of non-zero univariate components contributing to $f$. We are interested in the case when $d=d_{\varepsilon }\to \infty $ as $\varepsilon \to 0$ and the parameter $s$ stays “small” relative to $d$. With these assumptions, the recovery problem in hand becomes that of determining which sparse additive components are non-zero.