首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Performance bounds for parameter estimates of high-dimensional linear models with correlated errors
  • 本地全文:下载
  • 作者:Wei-Biao Wu ; Ying Nian Wu
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2016
  • 卷号:10
  • 期号:1
  • 页码:352-379
  • DOI:10.1214/16-EJS1108
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:This paper develops a systematic theory for high-dimensional linear models with dependent errors and/or dependent covariates. To study properties of estimates of the regression parameters, we adopt the framework of functional dependence measures ([43]). For the covariates two schemes are addressed: the random design and the deterministic design. For the former we apply the constrained $\ell_{1}$ minimization approach, while for the latter the Lasso estimation procedure is used. We provide a detailed characterization on how the error rates of the estimates depend on the moment conditions that control the tail behaviors, the dependencies of the underlying processes that generate the errors and the covariates, the dimension and the sample size. Our theory substantially extends earlier ones by allowing dependent and/or heavy-tailed errors and the covariates. As our main tools, we derive exponential tail probability inequalities for dependent sub-Gaussian errors and Nagaev-type inequalities for dependent non-sub-Gaussian errors that arise from linear or non-linear processes.
国家哲学社会科学文献中心版权所有