首页    期刊浏览 2024年12月14日 星期六
登录注册

文章基本信息

  • 标题:Estimation of a delta-contaminated density of a random intensity of Poisson data
  • 本地全文:下载
  • 作者:Daniela De Canditiis ; Marianna Pensky
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2016
  • 卷号:10
  • 期号:1
  • 页码:683-705
  • DOI:10.1214/16-EJS1118
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:In the present paper, we constructed an estimator of a delta contaminated mixing density function g(λ) of an intensity of the Poisson distribution. The estimator is based on an expansion of the continuous portion g(λ) of the unknown pdf over an overcomplete dictionary with the recovery of the coefficients obtained as the solution of an optimization problem with Lasso penalty. In order to apply Lasso technique in the, so called, prediction setting where it requires virtually no assumptions on the dictionary and, moreover, to ensure fast convergence of Lasso estimator, we use a novel formulation of the optimization problem based on the inversion of the dictionary elements.
  • 关键词:Mixing density;Poisson distribution;empirical Bayes;Lasso penalty.
国家哲学社会科学文献中心版权所有