首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Concentration inequalities for polynomials of contracting Ising models
  • 本地全文:下载
  • 作者:Reza Gheissari ; Eyal Lubetzky ; Yuval Peres
  • 期刊名称:Electronic Communications in Probability
  • 印刷版ISSN:1083-589X
  • 出版年度:2018
  • 卷号:23
  • DOI:10.1214/18-ECP173
  • 语种:English
  • 出版社:Electronic Communications in Probability
  • 摘要:We study the concentration of a degree-$d$ polynomial of the $N$ spins of a general Ising model, in the regime where single-site Glauber dynamics is contracting. For $d=1$, Gaussian concentration was shown by Marton (1996) and Samson (2000) as a special case of concentration for convex Lipschitz functions, and extended to a variety of related settings by e.g., Chazottes et al. (2007) and Kontorovich and Ramanan (2008). For $d=2$, exponential concentration was shown by Marton (2003) on lattices. We treat a general fixed degree $d$ with $O(1)$ coefficients, and show that the polynomial has variance $O(N^d)$ and, after rescaling it by $N^{-d/2}$, its tail probabilities decay as $\exp (- c\,r^{2/d})$ for deviations of $r \geq C \log N$.
国家哲学社会科学文献中心版权所有