首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:Block size in Geometric($p$)-biased permutations
  • 本地全文:下载
  • 作者:Irina Cristali ; Vinit Ranjan ; Jake Steinberg
  • 期刊名称:Electronic Communications in Probability
  • 印刷版ISSN:1083-589X
  • 出版年度:2018
  • 卷号:23
  • DOI:10.1214/18-ECP182
  • 语种:English
  • 出版社:Electronic Communications in Probability
  • 摘要:Fix a probability distribution $\mathbf p = (p_1, p_2, \ldots )$ on the positive integers. The first block in a $\mathbf p$-biased permutation can be visualized in terms of raindrops that land at each positive integer $j$ with probability $p_j$. It is the first point $K$ so that all sites in $[1,K]$ are wet and all sites in $(K,\infty )$ are dry. For the geometric distribution $p_j= p(1-p)^{j-1}$ we show that $p \log K$ converges in probability to an explicit constant as $p$ tends to 0. Additionally, we prove that if $\mathbf p$ has a stretch exponential distribution, then $K$ is infinite with positive probability.
国家哲学社会科学文献中心版权所有