首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:First passage percolation on a hyperbolic graph admits bi-infinite geodesics
  • 本地全文:下载
  • 作者:Itai Benjamini ; Romain Tessera
  • 期刊名称:Electronic Communications in Probability
  • 印刷版ISSN:1083-589X
  • 出版年度:2017
  • 卷号:22
  • DOI:10.1214/17-ECP44
  • 语种:English
  • 出版社:Electronic Communications in Probability
  • 摘要:Given an infinite connected graph, a way to randomly perturb its metric is to assign random i.i.d. lengths to the edges. An open question attributed to Furstenberg ([14]) is whether there exists a bi-infinite geodesic in first passage percolation on the euclidean lattice of dimension at least 2. Although the answer is generally conjectured to be negative, we give a positive answer for graphs satisfying some negative curvature assumption. Assuming only strict positivity and finite expectation of the random lengths, we prove that if a graph $X$ has bounded degree and contains a Morse geodesic (e.g. is non-elementary Gromov hyperbolic), then almost surely, there exists a bi-infinite geodesic in first passage percolation on $X$.
  • 关键词:fifirst passage percolation;two-sided geodesics;hyperbolic graph;Morse geodesics.
国家哲学社会科学文献中心版权所有