首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Weak and strong disorder for the stochastic heat equation and continuous directed polymers in $d\geq 3$
  • 本地全文:下载
  • 作者:Chiranjib Mukherjee ; Alexander Shamov ; Ofer Zeitouni
  • 期刊名称:Electronic Communications in Probability
  • 印刷版ISSN:1083-589X
  • 出版年度:2016
  • 卷号:21
  • DOI:10.1214/16-ECP18
  • 语种:English
  • 出版社:Electronic Communications in Probability
  • 摘要:We consider the smoothed multiplicative noise stochastic heat equation \[\mathrm{d} u_{\varepsilon ,t}= \frac 12 \Delta u_{\varepsilon ,t} \mathrm{d} t+ \beta \varepsilon ^{\frac{d-2} {2}}\, \, u_{\varepsilon , t} \, \mathrm{d} B_{\varepsilon ,t} , \;\;u_{\varepsilon ,0}=1,\] in dimension $d\geq 3$, where $B_{\varepsilon ,t}$ is a spatially smoothed (at scale $\varepsilon $) space-time white noise, and $\beta >0$ is a parameter. We show the existence of a $\bar \beta \in (0,\infty )$ so that the solution exhibits weak disorder when $\beta <\bar \beta $ and strong disorder when $\beta > \bar \beta $. The proof techniques use elements of the theory of the Gaussian multiplicative chaos.
国家哲学社会科学文献中心版权所有