首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:A brief review of optimal scaling of the main MCMC approaches and optimal scaling of additive TMCMC under non-regular cases
  • 本地全文:下载
  • 作者:Kushal K. Dey ; Sourabh Bhattacharya
  • 期刊名称:Brazilian Journal of Probability and Statistics
  • 印刷版ISSN:0103-0752
  • 出版年度:2019
  • 卷号:33
  • 期号:2
  • 页码:222-266
  • DOI:10.1214/17-BJPS386
  • 语种:English
  • 出版社:Brazilian Statistical Association
  • 摘要:Transformation based Markov Chain Monte Carlo (TMCMC) was proposed by Dutta and Bhattacharya (Statistical Methodology 16 (2014) 100–116) as an efficient alternative to the Metropolis–Hastings algorithm, especially in high dimensions. The main advantage of this algorithm is that it simultaneously updates all components of a high dimensional parameter using appropriate move types defined by deterministic transformation of a single random variable. This results in reduction in time complexity at each step of the chain and enhances the acceptance rate.
国家哲学社会科学文献中心版权所有