首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:A brief tutorial on transformation based Markov Chain Monte Carlo and optimal scaling of the additive transformation
  • 本地全文:下载
  • 作者:Kushal Kr. Dey ; Sourabh Bhattacharya
  • 期刊名称:Brazilian Journal of Probability and Statistics
  • 印刷版ISSN:0103-0752
  • 出版年度:2017
  • 卷号:31
  • 期号:3
  • 页码:569-617
  • DOI:10.1214/16-BJPS325
  • 语种:English
  • 出版社:Brazilian Statistical Association
  • 摘要:We consider the recently introduced Transformation-based Markov Chain Monte Carlo (TMCMC) (Stat. Methodol. 16 (2014) 100–116), a methodology that is designed to update all the parameters simultaneously using some simple deterministic transformation of a one-dimensional random variable drawn from some arbitrary distribution on a relevant support. The additive transformation based TMCMC is similar in spirit to random walk Metropolis, except the fact that unlike the latter, additive TMCMC uses a single draw from a one-dimensional proposal distribution to update the high-dimensional parameter. In this paper, we first provide a brief tutorial on TMCMC, exploring its connections and contrasts with various available MCMC methods.
国家哲学社会科学文献中心版权所有