首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Second-order autoregressive Hidden Markov Model
  • 本地全文:下载
  • 作者:Daiane Aparecida Zuanetti ; Luis Aparecido Milan
  • 期刊名称:Brazilian Journal of Probability and Statistics
  • 印刷版ISSN:0103-0752
  • 出版年度:2017
  • 卷号:31
  • 期号:3
  • 页码:653-665
  • DOI:10.1214/16-BJPS328
  • 语种:English
  • 出版社:Brazilian Statistical Association
  • 摘要:We propose an extension of Hidden Markov Model (HMM) to support second-order Markov dependence in the observable random process. We propose a Bayesian method to estimate the parameters of the model and the non-observable sequence of states. We compare and select the best model, including the dependence order and number of states, using model selection criteria like Bayes factor and deviance information criterion (DIC). We apply the procedure to several simulated datasets and verify the good performance of the estimation procedure. Tests with a real dataset show an improved fitting when compared with usual first order HMMs demonstrating the usefulness of the proposed model.
国家哲学社会科学文献中心版权所有