首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:Nonparametric estimation of the residual entropy function with censored dependent data
  • 本地全文:下载
  • 作者:G. Rajesh ; E. I. Abdul-Sathar ; R. Maya
  • 期刊名称:Brazilian Journal of Probability and Statistics
  • 印刷版ISSN:0103-0752
  • 出版年度:2015
  • 卷号:29
  • 期号:4
  • 页码:866-877
  • DOI:10.1214/14-BJPS250
  • 语种:English
  • 出版社:Brazilian Statistical Association
  • 摘要:The residual entropy function introduced by Ebrahimi [Sankhyā A 58 (1996) 48–56], is viewed as a dynamic measure of uncertainty. This measure finds applications in modeling and analysis of life time data. In the present work, we propose nonparametric estimators for the residual entropy function based on censored data. Asymptotic properties of the estimator are established under suitable regularity conditions. Monte Carlo simulation studies are carried out to compare the performance of the estimators using the mean-squared error. The methods are illustrated using two real data sets.
国家哲学社会科学文献中心版权所有