首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:Spatial Bayesian Variable Selection Models on Functional Magnetic Resonance Imaging Time-Series Data
  • 本地全文:下载
  • 作者:Kuo-Jung Lee ; Galin L. Jones ; Brian S. Caffo
  • 期刊名称:Bayesian Analysis
  • 印刷版ISSN:1931-6690
  • 电子版ISSN:1936-0975
  • 出版年度:2014
  • 卷号:9
  • 期号:3
  • 页码:699-732
  • DOI:10.1214/14-BA873
  • 语种:English
  • 出版社:International Society for Bayesian Analysis
  • 摘要:A common objective of fMRI (functional magnetic resonance imaging) studies is to determine subject-specific areas of increased blood oxygenation level dependent (BOLD) signal contrast in response to a stimulus or task, and hence to infer regional neuronal activity. We posit and investigate a Bayesian approach that incorporates spatial and temporal dependence and allows for the task-related change in the BOLD signal to change dynamically over the scanning session. In this way, our model accounts for potential learning effects in addition to other mechanisms of temporal drift in task-related signals. We study the properties of the model through its performance on simulated and real data sets.
国家哲学社会科学文献中心版权所有