首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Model Criticism in Latent Space
  • 本地全文:下载
  • 作者:Sohan Seth ; Iain Murray ; Christopher K. I. Williams
  • 期刊名称:Bayesian Analysis
  • 印刷版ISSN:1931-6690
  • 电子版ISSN:1936-0975
  • 出版年度:2019
  • 卷号:14
  • 期号:3
  • 页码:703-725
  • DOI:10.1214/18-BA1124
  • 语种:English
  • 出版社:International Society for Bayesian Analysis
  • 摘要:Model criticism is usually carried out by assessing if replicated data generated under the fitted model looks similar to the observed data, see e.g. Gelman, Carlin, Stern, and Rubin (2004, p. 165). This paper presents a method for latent variable models by pulling back the data into the space of latent variables, and carrying out model criticism in that space. Making use of a model’s structure enables a more direct assessment of the assumptions made in the prior and likelihood. We demonstrate the method with examples of model criticism in latent space applied to factor analysis, linear dynamical systems and Gaussian processes.
  • 关键词:model criticism; latent variable models; factor analysis; linear dynamical systems; Gaussian processes.
国家哲学社会科学文献中心版权所有