首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Big Data Bayesian Linear Regression and Variable Selection by Normal-Inverse-Gamma Summation
  • 本地全文:下载
  • 作者:Hang Qian
  • 期刊名称:Bayesian Analysis
  • 印刷版ISSN:1931-6690
  • 电子版ISSN:1936-0975
  • 出版年度:2018
  • 卷号:13
  • 期号:4
  • 页码:1011-1035
  • DOI:10.1214/17-BA1083
  • 语种:English
  • 出版社:International Society for Bayesian Analysis
  • 摘要:We introduce the normal-inverse-gamma summation operator, which combines Bayesian regression results from different data sources and leads to a simple split-and-merge algorithm for big data regressions. The summation operator is also useful for computing the marginal likelihood and facilitates Bayesian model selection methods, including Bayesian LASSO, stochastic search variable selection, Markov chain Monte Carlo model composition, etc. Observations are scanned in one pass and then the sampler iteratively combines normal-inversegamma distributions without reloading the data. Simulation studies demonstrate that our algorithms can efficiently handle highly correlated big data. A real-world data set on employment and wage is also analyzed.
  • 关键词:conjugate prior; hierarchical shrinkage; MapReduce.
国家哲学社会科学文献中心版权所有