首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Data-Dependent Posterior Propriety of a Bayesian Beta-Binomial-Logit Model
  • 本地全文:下载
  • 作者:Hyungsuk Tak ; Carl N. Morris
  • 期刊名称:Bayesian Analysis
  • 印刷版ISSN:1931-6690
  • 电子版ISSN:1936-0975
  • 出版年度:2017
  • 卷号:12
  • 期号:2
  • 页码:533-555
  • DOI:10.1214/16-BA1012
  • 语种:English
  • 出版社:International Society for Bayesian Analysis
  • 摘要:A Beta-Binomial-Logit model is a Beta-Binomial model with covariate information incorporated via a logistic regression. Posterior propriety of a Bayesian Beta-Binomial-Logit model can be data-dependent for improper hyper-prior distributions. Various researchers in the literature have unknowingly used improper posterior distributions or have given incorrect statements about posterior propriety because checking posterior propriety can be challenging due to the complicated functional form of a Beta-Binomial-Logit model. We derive data-dependent necessary and sufficient conditions for posterior propriety within a class of hyper-prior distributions that encompass those used in previous studies. When a posterior is improper due to improper hyper-prior distributions, we suggest using proper hyper-prior distributions that can mimic the behaviors of improper choices.
国家哲学社会科学文献中心版权所有