首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:Algorithm Design and Comparative Analysis for Outlier Detection using Genetic Algorithm and Bacterial Foraging
  • 本地全文:下载
  • 作者:Dr. Amit Verma ; Er.Parminder Kaur ; Sharnjeet Kaur
  • 期刊名称:International Journal of Computer Science & Technology
  • 印刷版ISSN:2229-4333
  • 电子版ISSN:0976-8491
  • 出版年度:2015
  • 卷号:6
  • 期号:3
  • 页码:48-51
  • 语种:English
  • 出版社:Ayushmaan Technologies
  • 摘要:Data mining derive its name for searching necessary information from a large database and utilizes this information in better way. To arrange the data in proper manner there is a need of clustering and classification techniques. With respect to other algorithms K-Mean clustering algorithm attains attention to arrange the data in clusters . The optimization algorithms such as Genetic algorithm and Bacterial Foraging Algorithm used to optimize the result of K-Mean clustering algorithm and detect outliers from the result of K-Mean Clustering algorithm. In this paper a hybrid genetic and bacterial foraging algorithm is proposed to find outliers from the data.
  • 关键词:K-mean;Genetic algorithm;Outlier Detection;Bacterial Foraging Algorithm.
国家哲学社会科学文献中心版权所有