首页    期刊浏览 2025年02月28日 星期五
登录注册

文章基本信息

  • 标题:Optimized Clustering for Personal Name Information Extraction
  • 本地全文:下载
  • 作者:G. Naveen Sundar ; Teena A. Sunny
  • 期刊名称:International Journal of Computer Science & Technology
  • 印刷版ISSN:2229-4333
  • 电子版ISSN:0976-8491
  • 出版年度:2012
  • 卷号:3
  • 期号:4
  • 页码:361-363
  • 语种:English
  • 出版社:Ayushmaan Technologies
  • 摘要:The person name information extraction system generally mines the person in query and their specific personal featured information(occupation, DOBetc). One issue anticipated in such system includes ambiguity of person names and feature extractions. To resolve this issue we employ agglomerative clustering that that will cluster features that share a similarity matrix and thus helps to find the target person and relevant personal details.This paper clearly portrays how this clustering technique is an effective measure amongst other.
  • 关键词:Unsupervised learning;Fscore;Ambiguity;Bigrams;Log Likelihood
国家哲学社会科学文献中心版权所有