期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2015
卷号:112
期号:24
页码:7444-7448
DOI:10.1073/pnas.1417678112
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:SignificanceDespite phase transitions, such as melting, being ubiquitous in nature, understanding what occurs at the nanoscale (such as in nanocrystals) has so far remained challenging. With ensemble studies of nanocrystals it is often difficult to discriminate between intrinsic size-dependent properties and effects due to sample size and shape dispersity. Here, using an X-ray free electron laser we image the reversible melting of an individual nanocrystal induced by an ultrashort laser. It is revealed that the melting occurs transiently, repeatably, and inhomogeneously. This is consistent with a core-shell model where the exterior is melted and a solid core remains. These findings reveal, unambiguously, that core-shell melting occurs, which has important implications for understanding nanoscale phenomena. There is a fundamental interest in studying photoinduced dynamics in nanoparticles and nanostructures as it provides insight into their mechanical and thermal properties out of equilibrium and during phase transitions. Nanoparticles can display significantly different properties from the bulk, which is due to the interplay between their size, morphology, crystallinity, defect concentration, and surface properties. Particularly interesting scenarios arise when nanoparticles undergo phase transitions, such as melting induced by an optical laser. Current theoretical evidence suggests that nanoparticles can undergo reversible nonhomogenous melting with the formation of a core-shell structure consisting of a liquid outer layer. To date, studies from ensembles of nanoparticles have tentatively suggested that such mechanisms are present. Here we demonstrate imaging transient melting and softening of the acoustic phonon modes of an individual gold nanocrystal, using an X-ray free electron laser. The results demonstrate that the transient melting is reversible and nonhomogenous, consistent with a core-shell model of melting. The results have implications for understanding transient processes in nanoparticles and determining their elastic properties as they undergo phase transitions.