摘要:As climate is an uncontrollable yet essential input in the agriculture industry, the impact of climate change may have on crop production in Saskatchewan is of importance. The main objective of this study is to investigate how farmers would adapt to climate change by switching their crop mix under future climate change scenarios. A fractional multinomial logit (FMNL) model was used to assess how total area of cropland has changed over a thirty year time period. The panel data included variables to represent the land characteristics of Saskatchewan, climatic variables, and price and policy variables in order to assess how average seeded area of each crop group changed. The results indicate that crop allocation depends largely on the price of other crop groups and temperatures in the spring (April) and summer (July). Climate plays an important role in the major crop groups, such as wheat, canola and pulses. Cool, dry springs are the ideal conditions when choosing nearly all crops, while hot, wet summers increase the choice to leave land to summerfallow. Policy and the different soil zones also play a significant role in area allocation decisions. Changes in policies such as the removal of the Crow’s Nest Pass Agreement, and the removal of oats from the Canadian wheat board (CWB) marketing, had a negative impact on the choice to grow wheat, as expected. The different soil zones in Saskatchewan played an important role in area allocation for a majority of the crops, having a negative effect on the choice of wheat over every other crop group except pulses and summerfallow. Three future climate change scenarios were simulated for each soil zone. Results indicate that under the projected changes in climate area allocated to wheat will continue to decrease into the future by 2.7 to 4.6% in various soil zones. At the same time, the area left to summerfallow is projected to increase under climate change. The choice of wheat is preferred over pulses, feed and forages, while the choice of specialty oilseeds (flaxseed, mustard seed and canary seed) are projected to become preferred over wheat in the future.