首页    期刊浏览 2025年01月06日 星期一
登录注册

文章基本信息

  • 标题:Data-Driven Nonlinear Optimal Control for Distributed Parameter Systems with Output Delay
  • 本地全文:下载
  • 作者:Gou Nishida ; Noboru Sakamoto
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2018
  • 卷号:51
  • 期号:3
  • 页码:101-106
  • DOI:10.1016/j.ifacol.2018.06.028
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis paper presents a predictive nonlinear optimal control method for nonlinear distributed parameter systems with output delay by means of a data-driven modeling method called the dynamic mode decomposition. Nonlinear optimal control problems can be solved by an exact numerical solver of Hamilton-Jacobi equations called the stable manifold method. A nonlinear optimal control for distributed parameter systems has been proposed in terms of a finite-dimensional reduction derived from time series data of system responses. The optimal controllers consist of optimal gains at each state on an optimal orbit. Thus, output delays bring on the mismatch between gains calculated from observations and actual states of controlled systems. A state prediction realized by the dynamic mode decomposition can recover a performance degradation arisen from the delay.
  • 关键词:KeywordsOptimal controlNonlinear controlDistributed parameter systems
国家哲学社会科学文献中心版权所有