首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Determining Empirical Stellar Masses and Radii from Transits and Gaia Parallaxes as Illustrated by Spitzer Observations of KELT-11b
  • 本地全文:下载
  • 作者:Thomas G. Beatty ; Daniel J. Stevens ; Karen A. Collins
  • 期刊名称:The Astronomical journal
  • 印刷版ISSN:0004-6256
  • 电子版ISSN:1538-3881
  • 出版年度:2017
  • 卷号:154
  • 期号:1
  • 页码:1-63
  • DOI:10.3847/1538-3881/aa7511
  • 语种:English
  • 出版社:American Institute of Physics
  • 摘要:Using the Spitzer Space Telescope, we observed a transit at 3.6 μm of KELT-11b. We also observed three partial planetary transits from the ground. We simultaneously fit these observations, ground-based photometry from Pepper et al., radial velocity data from Pepper et al., and a spectral energy distribution (SED) model using catalog magnitudes and the Hipparcos parallax to the system. The only significant difference between our results and those of Pepper et al. is that we find the orbital period to be shorter by 37 s, 4.73610 ± 0.00003 versus 4.73653 ± 0.00006 days, and we measure a transit center time of 2457483.4310 ± 0.0007, which is 42 minutes earlier than predicted. Using our new photometry, we precisely measure the density of the star KELT-11 to 4%. By combining the parallax and catalog magnitudes of the system, we are able to measure the radius of KELT-11b essentially empirically. Coupled with the stellar density, this gives a parallactic mass and radius of 1.8 and 2.9 , which are each approximately 1σ higher than the adopted model-estimated mass and radius. If we conduct the same fit using the expected parallax uncertainty from the final Gaia data release, this difference increases to 4σ. The differences between the model and parallactic masses and radii for KELT-11 demonstrate the role that precise Gaia parallaxes, coupled with simultaneous photometric, radial velocity, and SED fitting, can play in determining stellar and planetary parameters. With high-precision photometry of transiting planets and high-precision Gaia parallaxes, the parallactic mass and radius uncertainties of stars become 1% and 3%, respectively. TESS is expected to discover 60–80 systems where these measurements will be possible. These parallactic mass and radius measurements have uncertainties small enough that they may provide observational input into the stellar models themselves.
  • 关键词:parallaxes ; planetary systems ; stars: fundamental parameters
国家哲学社会科学文献中心版权所有