首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Global-scale phylogenetic linguistic inference from lexical resources
  • 本地全文:下载
  • 作者:Gerhard Jäger
  • 期刊名称:Scientific Data
  • 电子版ISSN:2052-4463
  • 出版年度:2018
  • 卷号:5
  • DOI:10.1038/sdata.2018.189
  • 语种:English
  • 出版社:Nature Publishing Group
  • 摘要:Automatic phylogenetic inference plays an increasingly important role in computational historical linguistics. Most pertinent work is currently based on expert cognate judgments. This limits the scope of this approach to a small number of well-studied language families. We used machine learning techniques to compile data suitable for phylogenetic inference from the ASJP database, a collection of almost 7,000 phonetically transcribed word lists over 40 concepts, covering two thirds of the extant world-wide linguistic diversity. First, we estimated Pointwise Mutual Information scores between sound classes using weighted sequence alignment and general-purpose optimization. From this we computed a dissimilarity matrix over all ASJP word lists. This matrix is suitable for distance-based phylogenetic inference. Second, we applied cognate clustering to the ASJP data, using supervised training of an SVM classifier on expert cognacy judgments. Third, we defined two types of binary characters, based on automatically inferred cognate classes and on sound-class occurrences. Several tests are reported demonstrating the suitability of these characters for character-based phylogenetic inference.
国家哲学社会科学文献中心版权所有