首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Semantic representation for visual reasoning
  • 本地全文:下载
  • 作者:Xubin Ni ; Lirong Yin ; Xiaobing Chen
  • 期刊名称:MATEC Web of Conferences
  • 电子版ISSN:2261-236X
  • 出版年度:2019
  • 卷号:277
  • DOI:10.1051/matecconf/201927702006
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:In the field of visual reasoning, image features are widely used as the input of neural networks to get answers. However, image features are too redundant to learn accurate characterizations for regular networks. While in human reasoning, abstract description is usually constructed to avoid irrelevant details. Inspired by this, a higher-level representation named semantic representation is introduced in this paper to make visual reasoning more efficient. The idea of the Gram matrix used in the neural style transfer research is transferred here to build a relation matrix which enables the related information between objects to be better represented. The model using semantic representation as input outperforms the same model using image features as input which verifies that more accurate results can be obtained through the introduction of high-level semantic representation in the field of visual reasoning.
国家哲学社会科学文献中心版权所有