首页    期刊浏览 2025年03月01日 星期六
登录注册

文章基本信息

  • 标题:The Evaluation of a Concomitant Variable Behaviour in a Mixture of Regression Models
  • 本地全文:下载
  • 作者:Kristýna Vaňkátová ; Eva Fišerová
  • 期刊名称:Statistika : Statistics and Economy Journal
  • 印刷版ISSN:0322-788X
  • 电子版ISSN:1804-8765
  • 出版年度:2017
  • 卷号:97
  • 期号:4
  • 页码:61-75
  • 语种:English
  • 出版社:Czech Statistical Office
  • 摘要:Finite mixture of regression models are a popular technique for modelling the unobserved heterogeneity that occurs in the population. This method acquires parameters estimates by modelling a mixture conditional distribution of the response given explanatory variables. Since this optimization problem appears to be too computationally demanding, the expectation-maximization (EM) algorithm, an iterative algorithm for computing maximum likelihood estimates from incomplete data, is used in practice. In order to specify different components with higher accuracy and to improve regression parameter estimates and predictions the use of concomitant variables has been proposed. Based on a simulation study, performance and obvious advantages of concomitant variables are presented. A practical choice of appropriate concomitant variable and the effect of predictors' domains on the estimation are discussed as well.
国家哲学社会科学文献中心版权所有